Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

3,3'-[o-Phenylenebis(methyleneoxy)]-bis(6-chloroflavone) and 3,3'-propyl-enedioxybis[6-chloro-2-(2-furyl)-4H-1-benzopyran-4-one]

S. Thinagar, ${ }^{\text {a }}$ D. Velmurugan, ${ }^{\text {a }}$ * S. Shanmuga Sundara Raj, ${ }^{\text {b }}$ Hoong-Kun Fun, ${ }^{\text {b }}$ S. C. Gupta, ${ }^{\text {c }}$ H. Merazig ${ }^{\text {d }}$ and S. Bouacida ${ }^{\text {d }}$

${ }^{\text {a }}$ Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, ${ }^{\text {b }}$ X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ${ }^{\text {c }}$ Department of Chemistry, Kurukshetra University, Haryana, India, and ${ }^{\mathbf{d}}$ Department of Chemistry, Mentouri University, Constantaine 25000, Algeria
Correspondence e-mail: d_velu@yahoo.com

Received 24 October 2002
Accepted 27 January 2003
Online 11 March 2003
The title compound $3,3^{\prime}$-[o-phenylenebis(methyleneoxy)]-bis(6-chloroflavone), $\mathrm{C}_{38} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{O}_{6}$, (I), crystallizes in the monoclinic space group $C 2 / c$, with the molecules lying across twofold rotation axes so that there is half a molecule in the asymmetric unit, while the other title compound, $3,3^{\prime}$-propyl-enedioxybis[6-chloro-2-(2-furyl)-4H-1-benzopyran-4-one], $\mathrm{C}_{29} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{O}_{8}$, (II), crystallizes in monoclinic space group $P 2_{1} / n$ with one molecule in the asymmetric unit. In both compounds, the benzopyran moiety is nearly planar, with dihedral angles between the two fused rings of 1.43 (8) ${ }^{\circ}$ in (I), and 2.54 (7) and $3.00(6)^{\circ}$ with respect to the benzopyran moieties in the two halves of (II). The furan rings are twisted by 8.3 (1) and $8.4(1)^{\circ}$ in the two halves of (II). In both compounds, the molecular structure is stabilized by intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, while the crystal packing is stabilized by $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonds in (I) and (II), respectively.

Comment

Flavonoids exhibit antidiabetic (Hii \& Howell, 1985; Basnet et al., 1993; Ragunathan \& Sulochana, 1994) and aldose reductase inhibitory activities (Varma \& Kinoshita, 1976; Okuda et al., 1984; Aida et al., 1990). Flavone (2-phenyl-4H-1-benzo-pyran-4-one) derivatives are known to have both a coronary dilatory effect (Itz \& Potzsch, 1963) and capillary resistance activity (Gabor, 1981). Chromanone derivatives dilate the heart and are used to treat angina pectoris (Hasegaida, 1967). Against this background and in order to obtain detailed information about the molecular conformations of the title compounds in the solid state, X-ray structure determinations
of (I) and (II) were carried out and the results are presented here.

Figs. 1 and 2 show displacement ellipsoid plots of the molecules of (I) and (II), respectively, with the atom-numbering schemes. The asymmetric unit of the xylene derivative, (I), consists of a half molecule, as the molecules lie across twofold rotation axes, while that of the propylene derivative, (II), comprises one whole molecule. In (I), a phenyl ring is attached to the benzopyran moiety, whereas in (II), it is a furan ring that is attached. Four C and two O atoms form a linear coupling chain between the two flavone moieties in (I), while in (II), the coupling chain consists of three C and two O atoms.

(II)

In compound (I), the $\mathrm{C} 8-\mathrm{O} 2$ bond length (Table 1) agrees with the value of 1.385 (3) \AA reported by Bruno et al. (2001). In compound (II), the $\mathrm{C} 8-\mathrm{O} 2$ and $\mathrm{C} 24-\mathrm{O} 7$ bond lengths (Table 3) agree with the literature values [viz. 1.364 (2) \AA in Shuib et al. (1999) and 1.352 (3) \AA in Thinagar et al. (2000)]. The $\mathrm{C} 3-\mathrm{C} 8-\mathrm{C} 7$ angle in (I) agrees with a value reported in the literature [122.1 (3) ${ }^{\circ}$ in Özbey et al. (1999)], while the C7$\mathrm{C} 8-\mathrm{C} 3$ and $\mathrm{C} 19-\mathrm{C} 24-\mathrm{C} 23$ angles in (II) are comparable with a reported value [121.4 (4) ${ }^{\circ}$ in Letcher et al. (1992)].

The pyran rings are planar in both compounds and contrast with the normal half-chair conformation, as reported in Alex et al. (1993). The hetero atoms, viz. atom O2 in the ring and the oxo substituent O1 at position 4, cause slight variations in the geometric parameters within the ring. The values of the bond angles within the heterocyclic ring are in the range 113.3 (2)-122.6 (2) ${ }^{\circ}$ in (I) and in the ranges 114.5 (2)-122.8 (2) and 114.4 (2)-123.0 (2) ${ }^{\circ}$ in the two halves of (II). Similar variations in the geometric parameters of the pyran ring of the benzopyran system have been reported previously (Rybarczyk-Pirek et al., 2002).

In (I), the torsion angle $\mathrm{C} 1-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$ shows a + synclinal $(+s c)$ orientation of the phenyl ring with respect to the $4 H$-chromen-4-one moiety ($\mathrm{O} 1 / \mathrm{O} 2 / \mathrm{C} 1-\mathrm{C} 9$), while in (II), the torsion angles $\mathrm{C} 1-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 13$ and $\mathrm{C} 17-\mathrm{C} 25-\mathrm{C} 26-$ C29 indicate + synperiplanar ($+s p$) orientations of the two furan rings with respect to the $4 H$-chromen- 4 -one moieties (O1/O2/C1-C9 and O6/O7/C17-C25, respectively). Also, the torsion angle $\mathrm{O} 3-\mathrm{C} 16-\mathrm{C} 17-\mathrm{C} 18$ in (I) is + anticlinal $(+a c)$, while $\mathrm{O} 4-\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16$ and $\mathrm{O} 5-\mathrm{C} 16-\mathrm{C} 15-\mathrm{C} 14$ in (II) are +synclinal.

Figure 1
ORTEPII (Johnson, 1976) plot of the molecular structure of (I), showing 35% probability displacement ellipsoids and the atom-numbering scheme.

The benzopyran systems of (I) and (II) are not strictly planar and the dihedral angle formed by the benzene and pyran planes is $1.43(8)^{\circ}$ in (I), and 2.54 (7) and $3.00(6)^{\circ}$ in the two halves of (II). The dihedral angle between the best planes of the $4 H$-chromen-4-one moiety ($\mathrm{O} 1 / \mathrm{O} 2 / \mathrm{C} 1-\mathrm{C} 9$) and the phenyl ring is $53.5(1)^{\circ}$ in (I). In (II), the furan rings are not quite coplanar with the furylbenzopyran moieties $\mathrm{O} 2 / \mathrm{O} 3 / \mathrm{C} 1-$ C 13 and $\mathrm{O} 7 / \mathrm{O} 8 / \mathrm{C} 17-\mathrm{C} 29$, the dihedral angles being 6.88 (6) and 6.77 (6) ${ }^{\circ}$, respectively. The dihedral angles formed by the $\mathrm{O} 3 / \mathrm{C} 10-\mathrm{C} 13$ and $\mathrm{O} 8 / \mathrm{C} 26-\mathrm{C} 29$ furan rings with the $\mathrm{O} 1 / \mathrm{O} 2 / \mathrm{C} 1-$ C 9 and $\mathrm{O} 6 / \mathrm{O} 7 / \mathrm{C} 17-\mathrm{C} 254 H$-chromen-4-one moieties are 9.22 (6) and $9.41(6)^{\circ}$, respectively. The oxo and oxy atoms lie practically in the benzopyran planes in (I) and the two halves of (II).

In addition to van der Waals interactions, an intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bond stabilizes the crystal packing of (I). The H18 $\cdots \mathrm{Cl} 1(2.88 \AA)$ contact is significantly shorter than the sum of the van der Waals radii (2.95 Å; Bondi, 1964; Taylor \& Kennard, 1982). The molecular packing is stabilized by one intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond. In (II), the molecular structure is stabilized by two intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, while the crystal packing is stabilized by two intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. Details of the

Figure 2
ZORTEP (Zsolnai, 1997) plot of the molecular structure of (II), showing 35% probability displacement ellipsoids and the atom-numbering scheme.
hydrogen bonding for (I) and (II) are given in Tables 2 and 4, respectively.

Experimental

A suspension of 6-chloro-2-(2-furyl)-3-hydroxy-4-oxo-4H-1-benzopyran $(1 \mathrm{~g}, 0.0038 \mathrm{~mol})$, a $1, \omega$-dibromoalkane $(0.0019 \mathrm{~mol})$ [viz. 1,2-bis(bromomethyl)benzene for (I) and 1,3-dibromopropane for (II)], tetra- n-butylammonium iodide (1 g) and freshly ignited $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(1 \mathrm{~g})$ were refluxed in dry acetone $(30 \mathrm{ml})$ for 4 h . The colour of the reaction mixture changed from yellow to colourless. The reaction mixture, after filtration and distillation of the acetone, was poured into cold water, giving a monochromenone/bischromenone mixture, which was then crystallized from acetone to give the pure bischromenone title compounds.

Compound (I)

Crystal data

$\mathrm{C}_{38} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{O}_{6}$	$D_{x}=1.382 \mathrm{Mg} \mathrm{m}^{-3}$ $M_{r}=647.47$
Monoclinic, $C 2 / c$	Mo $K \alpha$ radiation
$a=13.2360(10) \AA$	Cell parameters from 25
$b=10.799(4) \AA$	reflections
$c=21.775(4) \AA$	$\theta=1.2-28^{\circ}$
$\beta=91.393(3)^{\circ}$	$\mu=0.26 \mathrm{~mm}^{-1}$
$V=3111.5(13) \AA^{3}$	$T=293(2) \mathrm{K}$
$Z=4$	Block, colourless
Data collection	$0.47 \times 0.43 \times 0.40 \mathrm{~mm}$
Enraf-Nonius CAD-4	
\quad diffractometer	
Non-profiled $\omega / 2 \theta$ scans	$\theta_{\text {max }}=30.4^{\circ}$
4781 measured reflections	$k=0 \rightarrow 18$
4612 independent reflections	$l=-31 \rightarrow 31$
1928 reflections with $I>2 \sigma(I)$	3 standard reflections
$R_{\text {int }}=0.024$	every 100 reflections
	intensity decay: none

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.1073 P)^{2} \\
&+1.2599 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.32 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.45 \mathrm{e} \AA^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054$
$w R\left(F^{2}\right)=0.230$
$S=1.00$
4612 reflections
208 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$ for (I).

$\mathrm{O} 2-\mathrm{C} 8$	$1.383(3)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.468(4)$
$\mathrm{C} 1-\mathrm{C} 9$	$1.345(4)$	$\mathrm{C} 3-\mathrm{C} 8$	$1.371(4)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.454(4)$		
$\mathrm{C} 9-\mathrm{O} 2-\mathrm{C} 8$	$119.0(2)$	$\mathrm{C} 3-\mathrm{C} 8-\mathrm{C} 7$	$122.4(3)$
$\mathrm{C} 9-\mathrm{C} 1-\mathrm{C} 2$	$122.6(2)$	$\mathrm{C} 3-\mathrm{C} 8-\mathrm{O} 2$	$121.7(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$113.3(2)$	$\mathrm{C} 1-\mathrm{C} 9-\mathrm{O} 2$	$122.1(2)$
$\mathrm{C} 8-\mathrm{C} 3-\mathrm{C} 2$	$121.2(2)$		
$\mathrm{C} 1-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$54.1(4)$	$\mathrm{O} 3-\mathrm{C} 16-\mathrm{C} 17-\mathrm{C} 18$	$106.2(3)$

Table 2
Hydrogen-bonding geometry $\left({ }^{\circ},{ }^{\circ}\right)$ for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 16-\mathrm{H} 16 B \cdots \mathrm{O} 1$	0.97	2.50	$3.091(4)$	119
$\mathrm{C} 18-\mathrm{H} 18 \cdots \mathrm{Cl1} 1^{\mathrm{i}}$	0.93	2.88	$3.676(5)$	144

[^0]
Compound (II)

Crystal data

$\mathrm{C}_{29} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{O}_{8}$	Mo $K \alpha$ radiation
$M_{r}=565.33$	Cell parameters from 10418
Monoclinic, $P 2_{1} / n$	reflections
$a=15.0485(2) \AA$	$\theta=1.5-28.6^{\circ}$
$b=7.6144(1) \AA$	$\mu=0.34 \mathrm{~mm}^{-1}$
$c=20.7890(2) \AA$	$T=293(2) \mathrm{K}$
$\beta=100.784(1)^{\circ}$	Prism, colourless
$V=2340.04(5) \AA^{3}$	$0.44 \times 0.18 \times 0.16 \mathrm{~mm}$
$Z=4$	
$D_{x}=1.605 \mathrm{Mg} \mathrm{m}^{-3}$	
Data collection	5813 independent reflections
Siemens SMART CCD area-	3529 reflections with $I>2 \sigma(I)$
\quad detector	$R_{\text {int }}=0.088$
ω scans	$\theta_{\max }=28.6^{\circ}$
Absorption correction: empirical	$h=-19 \rightarrow 20$
$\quad(S A D A B S ;$ Sheldrick, 1996$)$	$k=-5 \rightarrow 10$
$T_{\text {min }}=0.867, T_{\text {max }}=0.948$	$l=-27 \rightarrow 27$
15 953 measured reflections	

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054$
$w R\left(F^{2}\right)=0.153$
$S=0.92$
5813 reflections

Mo $K \alpha$ radiation
Cell parameters from 10418
$\theta=1.5-28.6^{\circ}$
$\mu=0.34 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, colourless
$0.44 \times 0.18 \times 0.16 \mathrm{~mm}$

5813 independent reflections
3529 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.088$
$h=-19 \rightarrow 20$
$k=-5 \rightarrow 10$
$l=-27 \rightarrow 27$

352 parameters
H -atom parameters constrained
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.56 \mathrm{e}_{\mathrm{C}} \mathrm{A}^{-3}$
$\Delta \rho_{\min }=-0.46 \mathrm{e}^{-3}$

Table 3
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$ for (II).

$\mathrm{O} 2-\mathrm{C} 8$	$1.360(3)$	$\mathrm{C} 3-\mathrm{C} 8$	$1.381(2)$
$\mathrm{O} 7-\mathrm{C} 24$	$1.357(2)$	$\mathrm{C} 17-\mathrm{C} 25$	$1.355(3)$
$\mathrm{C} 1-\mathrm{C} 9$	$1.355(2)$	$\mathrm{C} 17-\mathrm{C} 18$	$1.446(3)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.437(3)$	$\mathrm{C} 18-\mathrm{C} 19$	$1.460(3)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.464(3)$	$\mathrm{C} 19-\mathrm{C} 24$	$1.378(2)$
$\mathrm{C} 9-\mathrm{O} 2-\mathrm{C} 8$	$119.5(2)$	$\mathrm{O} 2-\mathrm{C} 9-\mathrm{C} 1$	$122.8(2)$
$\mathrm{C} 25-\mathrm{O} 7-\mathrm{C} 24$	$119.4(2)$	$\mathrm{C} 25-\mathrm{C} 17-\mathrm{C} 18$	$120.7(2)$
$\mathrm{C} 9-\mathrm{C} 1-\mathrm{C} 2$	$121.2(2)$	$\mathrm{C} 17-\mathrm{C} 18-\mathrm{C} 19$	$114.4(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$114.5(2)$	$\mathrm{C} 24-\mathrm{C} 19-\mathrm{C} 18$	$120.3(2)$
$\mathrm{C} 8-\mathrm{C} 3-\mathrm{C} 2$	$120.3(2)$	$\mathrm{O} 7-\mathrm{C} 24-\mathrm{C} 19$	$121.7(2)$
$\mathrm{O} 2-\mathrm{C} 8-\mathrm{C} 3$	$121.6(2)$	$\mathrm{C} 19-\mathrm{C} 24-\mathrm{C} 23$	$122.0(2)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 3$	$121.8(2)$	$\mathrm{O} 7-\mathrm{C} 25-\mathrm{C} 17$	$123.0(2)$
C1-C9-C10-C13	$11.2(4)$	$\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16-\mathrm{O} 5$	$61.4(2)$
$\mathrm{O} 4-\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16$	$59.9(2)$	$\mathrm{C} 17-\mathrm{C} 25-\mathrm{C} 26-\mathrm{C} 29$	$10.5(4)$

Table 4
Hydrogen-bonding geometry ($\AA \AA^{\circ}$) for (II).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C13-H13 . ${ }^{\text {O }} 4$	0.93	2.49	2.896 (3)	107
C29-H29 . . O5	0.93	2.48	2.898 (3)	107
C6-H6 . ${ }^{\text {O }} 6^{\text {i }}$	0.93	2.41	3.299 (3)	160
$\mathrm{C} 22-\mathrm{H} 22 \cdots \mathrm{O} 1^{\text {ii }}$	0.93	2.44	3.161 (3)	134

Symmetry codes: (i) $1-x,-y, 1-z$; (ii) $2-x,-y, 1-z$.

In both compounds, all the H atoms were fixed geometrically and allowed to ride on the attached non- H atoms, with $\mathrm{C}-\mathrm{H}$ distances of 0.93 and $0.97 \AA$, and $U_{\text {iso }}=1.2 U_{\text {eq }}(\mathrm{C})$ for non-methyl H atoms.

For compound (I), data collection: CAD-4 EXPRESS (EnrafNonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1996); molecular graphics: ORTEPII (Johnson, 1976). For compound (II), data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; molecular graphics: ZORTEP (Zsolnai, 1997). For both compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

ST and DV thank UGC (India) for providing financial assistance under a major research project.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: NA1583). Services for accessing these data are described at the back of the journal.

References

Aida, K., Tawatta, M., Shindo, S., Onaya, T., Sasaki, H., Yamaguchi, T., Chin, M. \& Mitsuhasi, H. (1990). Planta Med. 56, 254-258.

Alex, G., Srinivasan, S., Krishnasamy, V., Suresh, R. V., Iyer, R. \& Iyer, P. R. (1993). Acta Cryst. C49, 70-73.

Basnet, P., Kadota, S., Shimizu, M., Xu, H. X. \& Namba, T. (1993). Chem. Pharm. Bull. 41, 1790-1795.
Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
Bruno, G., Nicolo, F., Rotondo, A., Foti, F., Risitano, F., Grassi, G. \& Bilardo, C. (2001). Acta Cryst. C57, 493-494.

Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
Gabor, M. (1981). Arzneim Forsch. (Drug Res.), 31, 442-445.
Harms, K. \& Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.
Hasegaida, G. (1967). Jpn Patent 67/24588; Chem. Abstr. (1968), 69, 67221.
Hii, C. S. T \& Howell, S. L. (1985). J. Endocrinol. 107, 1-8.
Itz, R. E. \& Potzsch, E. (1963). Arzneim Forsch. (Drug Res.), 41, 705-709.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Letcher, R. M., Yue, T.-Y. \& Cheung, K.-K. (1992). Acta Cryst. C48, 14621464.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Okuda, J., Miwa, I., Inagaki, K., Horie, T. \& Nakayama, M. (1984). Chem. Pharm. Bull. 32, 767-772.
Özbey, S., Kendi, E., Ayhan, G. K. \& Ertan, R. (1999). Acta Cryst. C55, 678680.

Ragunathan, V. \& Sulochana, N. (1994). J. Indian Chem. Soc. 71, 705-706.
Rybarczyk-Pirek, A. J., Malecka, M., Grabowski, S. J. \& Nawrot-Modranka, J. (2002). Acta Cryst. C58, o405-o406.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Shuib, N. S., Sam, T. W., Wong, K. C., Chinnakali, K. \& Fun, H.-K. (1999). Acta Cryst. C55, 576-578.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Taylor, R. \& Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063-5070.
Thinagar, S., Velmurugan, D., Amalraj, A. \& Raghunathan, R. (2000). Cryst. Res. Technol. 35, 979-986.
Varma, S. D. \& Kinoshita, J. H. (1976). Biochem. Pharmacol. 25, 2502-2513.
Zsolnai, L. (1997). ZORTEP. University of Heidelberg, Germany.

[^0]: Symmetry code: (i) $\frac{1}{2}-x, \frac{1}{2}-y,-z$.

